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Diffusively coupled networks
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Diffusively coupled networks



Back to the basics of physical interconnections
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Resistor

𝐼𝐼 =
1
𝑅𝑅 𝑉𝑉1 − 𝑉𝑉2

Spring
1
𝑅𝑅 𝐹𝐹 = 𝐾𝐾 𝑥𝑥1 − 𝑥𝑥2

1
𝑅𝑅

In connecting physical systems, there is often no predetermined 
direction of information [1]

w1 w2G21

Example: resistor / spring connection in electrical / mechanical system:

Difference of node signals drives the interaction:   diffusive coupling  

[1] J.C. Willems (1997,2010)



Diffusively coupled physical network
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Equation for node j:   



Mass-spring-damper system
• Masses 𝑀𝑀𝑗𝑗
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polynomial  



Mass-spring-damper system
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polynomial  

This fully fits in the earlier module representation: 

with the additional condition that: 

polynomial  
symmetric, diagonal



Module representation
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Consequences for node interactions:

• Node interactions come in pairs of modules
• Where numerators are the same

Framework for network identification remains the same

• Symmetry can be incorporated in identifiability/identification

[1] E.M.M. Kivits et al., CDC 2019.



Polynomial representation
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More attractive:  stay within the polynomial domain (discrete-time now) 

with               symmetric and nonmonic 

i.e. 

with 



Network identifiability[1]
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New analysis, based on              only (noise discarded because of algebraic loops):

Identifiability conditions:
• At least 1 excitation signal          present

[1] E.M.M. Kivits and PVdH, TAC 2023.

• and               left coprime
• diagonality constraint on 
• symmetric
• 1 parametric constraint in               or              

• present
• unimodular
• diagonal

•
•



Polynomial representation - identifiability
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• Identifiability conditions are strongly relaxed (compared to module framework)
in terms of number of excitation signals required.

• Diffusive couplings strongly limit the degrees of freedom in the network model

• Identification algorithms are available for both full network[1] and local 
identification[2].

[1] E.M.M. Kivits and PVdH, TAC 2023.
[2] E.M.M. Kivits and PVdH, CDC 2022.



Summary diffusively coupled networks

• Interesting class of models, not extensively studied in identification 

• Non-directed graphs

• Adhering to physical interconnections 

• Framework is fit for representing combined networks 
  (combining physical bi-directional links, and cyber uni-directional links)[1].
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[1] E.M.M. Kivits, PhD-Thesis 2024 (to appear).



Data-driven modeling in linear dynamic networks12

.

The end
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